Copied to
clipboard

G = C32⋊C27order 243 = 35

The semidirect product of C32 and C27 acting via C27/C9=C3

p-group, metabelian, nilpotent (class 2), monomial

Aliases: C32⋊C27, C9.3He3, C33.1C9, C9.63- 1+2, (C3×C27)⋊1C3, (C3×C9).2C9, C3.1(C3×C27), C3.2(C27⋊C3), (C32×C9).2C3, C3.2(C32⋊C9), C32.14(C3×C9), (C3×C9).31C32, SmallGroup(243,12)

Series: Derived Chief Lower central Upper central Jennings

C1C3 — C32⋊C27
C1C3C9C3×C9C32×C9 — C32⋊C27
C1C3 — C32⋊C27
C1C3×C9 — C32⋊C27
C1C3C3C3C3C3C3C9C3×C9 — C32⋊C27

Generators and relations for C32⋊C27
 G = < a,b,c | a3=b3=c27=1, ab=ba, cac-1=ab-1, bc=cb >

3C3
3C3
3C3
3C32
3C32
3C9
3C9
3C32
3C27
3C3×C9
3C27
3C27
3C3×C9
3C3×C9

Smallest permutation representation of C32⋊C27
On 81 points
Generators in S81
(1 10 19)(2 72 33)(3 52 55)(4 13 22)(5 75 36)(6 28 58)(7 16 25)(8 78 39)(9 31 61)(11 81 42)(12 34 64)(14 57 45)(15 37 67)(17 60 48)(18 40 70)(20 63 51)(21 43 73)(23 66 54)(24 46 76)(26 69 30)(27 49 79)(29 38 47)(32 41 50)(35 44 53)(56 65 74)(59 68 77)(62 71 80)
(1 41 62)(2 42 63)(3 43 64)(4 44 65)(5 45 66)(6 46 67)(7 47 68)(8 48 69)(9 49 70)(10 50 71)(11 51 72)(12 52 73)(13 53 74)(14 54 75)(15 28 76)(16 29 77)(17 30 78)(18 31 79)(19 32 80)(20 33 81)(21 34 55)(22 35 56)(23 36 57)(24 37 58)(25 38 59)(26 39 60)(27 40 61)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27)(28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54)(55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81)

G:=sub<Sym(81)| (1,10,19)(2,72,33)(3,52,55)(4,13,22)(5,75,36)(6,28,58)(7,16,25)(8,78,39)(9,31,61)(11,81,42)(12,34,64)(14,57,45)(15,37,67)(17,60,48)(18,40,70)(20,63,51)(21,43,73)(23,66,54)(24,46,76)(26,69,30)(27,49,79)(29,38,47)(32,41,50)(35,44,53)(56,65,74)(59,68,77)(62,71,80), (1,41,62)(2,42,63)(3,43,64)(4,44,65)(5,45,66)(6,46,67)(7,47,68)(8,48,69)(9,49,70)(10,50,71)(11,51,72)(12,52,73)(13,53,74)(14,54,75)(15,28,76)(16,29,77)(17,30,78)(18,31,79)(19,32,80)(20,33,81)(21,34,55)(22,35,56)(23,36,57)(24,37,58)(25,38,59)(26,39,60)(27,40,61), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54)(55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81)>;

G:=Group( (1,10,19)(2,72,33)(3,52,55)(4,13,22)(5,75,36)(6,28,58)(7,16,25)(8,78,39)(9,31,61)(11,81,42)(12,34,64)(14,57,45)(15,37,67)(17,60,48)(18,40,70)(20,63,51)(21,43,73)(23,66,54)(24,46,76)(26,69,30)(27,49,79)(29,38,47)(32,41,50)(35,44,53)(56,65,74)(59,68,77)(62,71,80), (1,41,62)(2,42,63)(3,43,64)(4,44,65)(5,45,66)(6,46,67)(7,47,68)(8,48,69)(9,49,70)(10,50,71)(11,51,72)(12,52,73)(13,53,74)(14,54,75)(15,28,76)(16,29,77)(17,30,78)(18,31,79)(19,32,80)(20,33,81)(21,34,55)(22,35,56)(23,36,57)(24,37,58)(25,38,59)(26,39,60)(27,40,61), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54)(55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81) );

G=PermutationGroup([[(1,10,19),(2,72,33),(3,52,55),(4,13,22),(5,75,36),(6,28,58),(7,16,25),(8,78,39),(9,31,61),(11,81,42),(12,34,64),(14,57,45),(15,37,67),(17,60,48),(18,40,70),(20,63,51),(21,43,73),(23,66,54),(24,46,76),(26,69,30),(27,49,79),(29,38,47),(32,41,50),(35,44,53),(56,65,74),(59,68,77),(62,71,80)], [(1,41,62),(2,42,63),(3,43,64),(4,44,65),(5,45,66),(6,46,67),(7,47,68),(8,48,69),(9,49,70),(10,50,71),(11,51,72),(12,52,73),(13,53,74),(14,54,75),(15,28,76),(16,29,77),(17,30,78),(18,31,79),(19,32,80),(20,33,81),(21,34,55),(22,35,56),(23,36,57),(24,37,58),(25,38,59),(26,39,60),(27,40,61)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27),(28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54),(55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81)]])

C32⋊C27 is a maximal subgroup of   C32⋊C54  C32⋊D27  C322D27

99 conjugacy classes

class 1 3A···3H3I···3N9A···9R9S···9AD27A···27BB
order13···33···39···99···927···27
size11···13···31···13···33···3

99 irreducible representations

dim111111333
type+
imageC1C3C3C9C9C27He33- 1+2C27⋊C3
kernelC32⋊C27C3×C27C32×C9C3×C9C33C32C9C9C3
# reps162126542412

Matrix representation of C32⋊C27 in GL4(𝔽109) generated by

1000
0100
00450
00063
,
1000
04500
00450
00045
,
25000
0010
0001
06300
G:=sub<GL(4,GF(109))| [1,0,0,0,0,1,0,0,0,0,45,0,0,0,0,63],[1,0,0,0,0,45,0,0,0,0,45,0,0,0,0,45],[25,0,0,0,0,0,0,63,0,1,0,0,0,0,1,0] >;

C32⋊C27 in GAP, Magma, Sage, TeX

C_3^2\rtimes C_{27}
% in TeX

G:=Group("C3^2:C27");
// GroupNames label

G:=SmallGroup(243,12);
// by ID

G=gap.SmallGroup(243,12);
# by ID

G:=PCGroup([5,-3,3,-3,3,-3,135,121,78]);
// Polycyclic

G:=Group<a,b,c|a^3=b^3=c^27=1,a*b=b*a,c*a*c^-1=a*b^-1,b*c=c*b>;
// generators/relations

Export

Subgroup lattice of C32⋊C27 in TeX

׿
×
𝔽